Lively Walk-Through:
A Lightweight Formal
Method in UI/UX Design

Tomohiro Oda

Software Research Associates, Inc.
Key Technology Laboratory

This work was supported by Kaken Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research,
Grant Number 24220001.

Lively Walk-Through

What is Lively Walk-Through?

Ul Prototyping environment built on
VDM-SL interpreter and Smalltalk system

Users:
VDM specifiers and Ul/UX designers

Obijective:
To better undersntand the system
"0 discuss and make agreements

Lively Walk-Through in Action

8 O 0 () Squeak4.3-ja.image
L FOavzok W=l 77U BB 9V ED AT ®E: 6:56:19 pm

state counter of

count : int

init s == s = mk_counter(0)
end

operations

get : () ==>int

no undo for reset?
reset=swalk=reset

15 January 2013 6:31 pm : EVENT : [z hja| Undoable.
15 January 2013 6:31 pm : State : {Counter:
15 January 2013 6:31 pm : VDM : Counter'get| | may need to undo when
15 January 2013 6:31 pm : VDM : Counter'rese | accidental reset.

»

... undo won't work because
the user won't notice an
accidental reset...

[«]

Ul Prototyping
with Lively Walk-Through

explicit specification

Ul sketches
scenarios

Lively Walk-Through

St et o :
count : it
it 3 w3 = counterdO)
ot
opertions
ot 0 wen £

\

functional Ul prototype

l

agreement
between VOM and Ul

VDM engineer K

/

diffs on VDM spec new Ul sketches
histones with comments histories with comments

Interaction Designer

Story

Case Story :
Chemical Reaction Database

A VDM engineer and two Ul designers
iIs working together on the Chem DB project

Feb 2013, the first meeting of the VDM
engineer and the Ul designers

Overview of
Customer's Requirements

VDMer explaining the spec of DB

Simple GUI Prototype for Query

Sketching Ul Design for Query

Sketching Ul Design for
Search Result

Putting the Sketch into the Prototype

Assignment for the next session

VDM: writes a VDM spec for "reaction path"
estimates computational complexity of
reachability test

Ul: designs interactivity of energy-level graphs

Lively Walk-Through:
System Design

Lively Walk-Through
Prototyping Environment

(¢ Squeak4.3-ja.image

s)
Le 7AYok Y-

77U BB DsYED ALT

state counter of

get : () ==>int

count : int

init s == s = mk_counter(0)
end

operations

Cut Browser

no undo for reset?
reset=swalk=reset

15 January 2013 6:31 pm
15 January 2013 6:31 pm
15 January 2013 6:31 pm

EVENT : [Utzw kial
: State : {Counter:

: VDM : Counter'get
: VDM : Counter'rese

15 January 2013 6:31 pm :

»

[4]

undoable.

may need to undo when
accidental reset.

... undo won't work because
the user won't notice an
accidental reset...

B’RE:

6:56:19 pm

.

3 Layers for Animation

Top Layer: VDM Browser

module Counter A
exports all
definitions

state counter of

count : int
init s == s = mk_counter(0)
end

Bottom Layer: Ul Parts

s ﬂﬂ
> | I N
w '“ iRl (5] i ki

Middle Layer: Livetalk Browser
and Event-Action Editor

Reset
recordStep

ounter'inc()
t

% Y

ResetButton

3 Tools for Discussion

Frame Viewer
shows what's going on

6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013
6 February 2013

6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:
6:34:

15 am :
15 am :
15 am :
16 am :
16 am :
16 am :
21 am :
21 am :
21 am :
23 am :
23 am :
23 am :

EVENT : [Sensor]#mouselLeave
VDM : Counter'inc()=()

VDM : Counter'get()=2
EVENT : [Sensor]#mouselLeave
VDM : Counter'inc()=()

VDM : Counter'get()=3
EVENT : [ResetButton]#clicked
VDM : Counter'reset()=()
VDM : Counter'get()=0
EVENT : [Sensor]#mouselLeave
VDM : Counter'inc()=()

VDM : Counter'get()=1

Cut Viewer
to note and review discussion

6 February 2013 6:34:16 am : : !

6 February 2013 6:34:16 am : VDM : Counter'inc()= i

6 February 2013 6:34:16 am : VDM : Counter'get()= | front face, it could be pressed
6 February 2013 6:34:21 am : EVENT : [ResetButtor | by accident...

6 February 2013 6:34:21 am : VDM : Counter'reset(

6 February 2013 6:34:21 am : VDM : Counter'get()=

6 February 2013 6:34:23 am : EVENT : [Sensor]#mo

6 February 2013 6:34:23 am :

6 Fobhruary 2013 6:34:23 am

Coverage Viewer
shows what are unseen

overage Viewer QOC
Copy to Clipboard Update m
B

module Counter
exports all
definitions

state counter of

count : int

init s == s = mk_counter(0)
end

operations
get : () ==>int
get() == return count;

reset : () ==> ()

System Requirements

OS: Linux or MacOSX

Smalltalk System: Squeak 4.3 or higher
VDM interpreter. VDMJ-2.0.1

Libraries: SOMETHINGiIt, OSProcess

Architecture

Lively Walk-Through

SOMETHINGIt

VDMJ

Squeak

Java

OS(Linux or MacOSX)

Major Components

Coverage Frame Cut
Viewer Viewer Browser
Director
VDMJ Livetalk
Interface Compiler Ul Parts
VDM Livetalk Event-Action
Browser Browser Browser

Lightweight Formal Methods

Why Lightweight?

Formal specs in-ether MORE than specification
phase...

e requirement analysis
o type checking, animation
e design
o reference, assertion
o test
o test oracles, test cases

Why Lightweight?

Formal specs in-ether MORE than specification
phase...

e requirement analysis
o type checking, animation
e design
o reference, assertion, unit test

o test
o test oracles, test cases

e UI/UX design

o why not?

Two Worlds

Why collaborate?

Ul design without computer science may
"create" an unfeasible Ul.

Functional modeling without interaction design
may "construct" a stressful system.

Ul Prototyping Cycles

VDM Specification Interaction Design

Ul prototyping session

using Lively Walk-Through

Ul prototyping session
using Lively Walk-Through

Ul prototyping session
using Lively Walk-Through

L
36
-

How to make this happen?

How to make this happen?

or

Why this does not happen often?

They are Different Animals

=12 F 0O Q] -
3 vom Explorer 53 = 8|/l countervdmsl
|| module Counter B RN e
N redometer || @xeorts all
Pedometer definitions v @ counter
» (22 generated 4 count : nat
| Counter.vams| types o steps : Counter count
count = nat of Count : Counter” Count
@ step) : 0
state Count of 8 reset0 0
steps : count
@ get(: count

=8

nit
initSteps == initSteps = mk_Count(®)
nd

operations
step 1 O ==> O
step() == steps := steps + 1;

reset 1 O =>
reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

0l VDM Quick Interpreter | CufGh[r# B-r3- =0
[Debug Console] New_configuration [VDM SL Model] VDM) debugger
> print getQ

)
> print step()
> print get()
1

>

They are Different Animals

© 0 O [jVol 1-0 = [User. ects/Ov 1 ture.app/Cor
|rse %0 Q]2 8 5 e oy [@vov.
(83 vom Explorer 2 = O1|([) Countervams! 52 =)2 outiine R =
/& ¥ module Counter a R
-] exports all GA SIS
v £ Pedometer definitions v @ counter
» (22 generated & count : nat
| Counter.vdms! types o steps : Counter count

count = nat of Count : Counter” Count

@ step) 0
state Count of @ reset) <0
steps : count
- @ get) : count
initSteps == initSteps = mk_Count(@)
nd

operations
step : O ==> O
step() == steps := steps + 1;

reset : () == O

reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

> print getO
o
> print step()
> print get()
1

>

Error Log [[2 Problems |] Tasks, Qll VDM Quick |muprmﬂ Ex BB | 7?2 B3y =
[Debug Console] New_configuration [VDM SL Model] VDM) debugger

| o®]

Formal specification UI/UX design

the world of MAKING the world of USING

They are Different Animals

800 ter/Co /dms| - Overture Tools - /User [e-1. app/Col S/

=% IR0 T R P R 5 @vom|

(8D vom Explorer %2 = O|([l Counter.vamst %X =)2 outiine R =

module Counter 2R o W

o exports all 2

v £ Pedometer definitions v @ counter
» (2 generated 4 count : nat

| Counter.vdms! type

of steps : Counter” count
of Count : Counter” Count
@ step) <0
state Count of resetd 10
steps : count
@ get(: count

s
count = nat

nit
initSteps == initSteps = mk_Count(8)
nd

operations
step : O ==> O
step() == steps := steps + 1;

reset : () == O

reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

B[E-r9-=0

Error Log [[2 Problems |] Tasks, Qll VDM Quick |muprmﬂ
[Debug Console] New_configuration [VDM SL Model] VDM) debugger

> print getO

o
> print step()

> print get()

What is the system? What the user interact
with?

They are Different Animals

8 00 ms| - Tools - /Users/ton Over le-1.2. re.app/Col S/y
s~]35O r Qv | | iiviivke vy 5 @vom|
ﬁvw Explorer %X = O[[. Countervamsl =8)(2 outine X =0
module Counter BN e W
. exports all
v £ Pedometer definitions v @ counter
» (2% generated 4 count : nat
| Counter.vams| types o steps : Counter count
count = nat o Count : Counter* Count
@ step) < 0
state Count of B reset |0
steps : count

" 8 getd : count
initSteps == initSteps = mk_Count(0)
d

operations
step : O ==> O
step() == steps := steps + 1;

reset : () == O
reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

Error Log | [21 Problems |] Tasks al VDM Quick |mupvmﬂ B | #=B.05.=8
[Debug Console] New_configuration [VDM SL Model] VDM) debugger

> print getO

o
> print step()

> print get()

Logical soundness Cognitive soundness

They are -B#ferent-Similar Animals

8 O O [VDM ter/Col /dms| - Overture Tools - /User verturelde-1.2.3/overt p/Conten S/
=) IR0 T R P R 5 @vom|
(83 vom Explorer 2 = O1|([) Countervams! 52 =)2 outiine R =
module Counter BRN o W
- exports all
v £ Pedometer definitions v @ counter
» (2% generated 4 count : nat
| Counter.vdms! t

s
count = nat

state Count of
steps : count

ni

initSteps == initSteps = mk_Count(0)
nd
operations

step : O ==> O

step() == steps := steps + 1;

reset : () == O

reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

of steps : Counter” count
of Count : Counter” Count
@ step) <0

@ reset) 10

@ get(: count

> print getO
o
> print step()

> print get()

Error Log [[2 Problems |] Tasks, m Qll VDM Quick |muprmﬂ

B[E-r9-=0

[Debug Console] New_configuration [VDM SL Model] VDM) debugger

Understan

writing Understan

d by sketching

They are -BDiHerent-Amtmats Friends

|rse %0 Q]2 8 5 e oy
ﬁvw Explorer & = O|[[. countervdmsl 52

= 0[5 outine =8

module Counter 3R 0 W
o exports all
v £ Pedometer definitions v @ counter
» (22 generated 4 count : nat
| Counter.vdms! types

of steps : Counter” count
of Count : Counter” Count
@ stepl 0
state Count of m reset0 10
steps : count
& get) : count

count = nat

nit
initSteps == initSteps = mk_Count(8)
nd

operations
step : O ==> O
step() == steps := steps + 1;

reset : () == O
reset() == steps := 0;

get : () ==> count
get() == return steps;

end Counter

@] Error Log | [21 Problems |] Tasks Ql VDM Quick |nmprmﬂ Ex BB | 7 B8.r5»=0
[Debug Console] New_configuration [VDM SL Model] VDM) debugger

> print getO

o
> print step()
> print get()
1

>

| o®]

Animating the system makes

formal engineers and UI/UX designers
understand their design artifacts

They are Good Friends

VDM spec gives a functional basis
VDM animation gives motion to sketches

vvvvv
@
=5 owame =5

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ @

mmmmmmmmmmmmmm
,,,,,,,,,,,,,,
,,,,,,
state Count of
nitSeans — (nitSeens - me Count(0)

..........
) et [potiens [2 7wk [Camin i, @
mmmmmmmmm conhursion VOM . Vo VoW ebigae”
;i o0
it 00
ol

Ul sketch gives a context of functions
Ul animation gives user's perception

How to make this happen?

How to make this happen?

Animation

Animation And Discussion Drive
Ul Prototyping Cycles

VDM Specification Interaction Design

1
1
1
1
1
1
1
1
1
1
Ul prototyping session

using Lively Walk-Through

Ul prototyping session
using Lively Walk-Through

Ul prototyping session
using Lively Walk-Through

o

L
36
-

Live Demo

Conclusion

e Lively Walk-Through bridges between

functional modeling and UI/UX design
o VDM animation gives motion to a Ul sketch.
o Ul animation gives user's perception.

Future Work

e |Image processing (animating a sketch)

e Support for post-session tasks
o for VDM engineers
o for Ul designers

